Knowledge Distillation Meets Self-supervision

Guodong Xu*, Ziwei Liu, Xiaoxiao Li, Chen Change Loy

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

210 Citations (Scopus)

Abstract

Knowledge distillation, which involves extracting the “dark knowledge” from a teacher network to guide the learning of a student network, has emerged as an important technique for model compression and transfer learning. Unlike previous works that exploit architecture-specific cues such as activation and attention for distillation, here we wish to explore a more general and model-agnostic approach for extracting “richer dark knowledge” from the pre-trained teacher model. We show that the seemingly different self-supervision task can serve as a simple yet powerful solution. For example, when performing contrastive learning between transformed entities, the noisy predictions of the teacher network reflect its intrinsic composition of semantic and pose information. By exploiting the similarity between those self-supervision signals as an auxiliary task, one can effectively transfer the hidden information from the teacher to the student. In this paper, we discuss practical ways to exploit those noisy self-supervision signals with selective transfer for distillation. We further show that self-supervision signals improve conventional distillation with substantial gains under few-shot and noisy-label scenarios. Given the richer knowledge mined from self-supervision, our knowledge distillation approach achieves state-of-the-art performance on standard benchmarks, i.e., CIFAR100 and ImageNet, under both similar-architecture and cross-architecture settings. The advantage is even more pronounced under the cross-architecture setting, where our method outperforms the state of the art by an average of 2.3% in accuracy rate on CIFAR100 across six different teacher-student pairs. The code and models are available at: https://github.com/xuguodong03/SSKD.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2020 - 16th European Conference, 2020, Proceedings
EditorsAndrea Vedaldi, Horst Bischof, Thomas Brox, Jan-Michael Frahm
PublisherSpringer Science and Business Media Deutschland GmbH
Pages588-604
Number of pages17
ISBN (Print)9783030585440
DOIs
Publication statusPublished - 2020
Externally publishedYes
Event16th European Conference on Computer Vision, ECCV 2020 - Glasgow, United Kingdom
Duration: Aug 23 2020Aug 28 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12354 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference16th European Conference on Computer Vision, ECCV 2020
Country/TerritoryUnited Kingdom
CityGlasgow
Period8/23/208/28/20

Bibliographical note

Publisher Copyright:
© 2020, Springer Nature Switzerland AG.

ASJC Scopus Subject Areas

  • Theoretical Computer Science
  • General Computer Science

Cite this