Layer-by-layer assembly based low pressure biocatalytic nanofiltration membranes for micropollutants removal

Xin Li, Yilin Xu, Kunli Goh, Tzyy Haur Chong, Rong Wang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

75 Citations (Scopus)

Abstract

Biocatalytic nanofiltration (NF) membranes incorporated with enzymes show high capacity for micropollutants (MPs) removal. However, there remains significant challenges such as the lack of molecular-level tailoring for skin layer design and effective strategy for enzyme immobilization. In this work, layer-by-layer (LBL) assembly based biocatalytic NF membranes were fabricated for bisphenol (BPA) removal by immobilizing laccase into the skin layer during the LBL polyelectrolytes assembly with controlled crosslinking and immobilization. This strategy enables simultaneous enzyme immobilization and NF skin layer formation. Three laccase immobilization strategies (i.e., post immobilization, post crosslinking, and post crosslinking and immobilization) on skin layer were explored to prepare NF membrane for evaluating BPA removal efficiency. The post immobilization was identified as the optimal strategy, which endowed the biocatalytic NF membrane with a pure water permeability of 10.9 ± 0.4 LMH/bar and MgCl2 rejection of 97.2 ± 0.3% under 2 bar pressure, alongside competitive laccase loading (238.8 ± 3.5 μg/cm2) and laccase activity (0.6 U/cm2). The optimal biocatalytic NF membrane exhibited an improvement in BPA removal of 79.5% under an incubation mode and 92.5% under a full recycling mode. The removal efficiencies were ~240% higher than that of the unmodified LBL membrane and clearly comparable to other reported biocatalytic membranes. This performance was attributed to the synergistic effect of membrane rejection, adsorption and laccase catalysis. The optimal biocatalytic NF membrane was found to be robust after six cycles within 14 days, while maintaining a relatively high BPA removal efficiency and salt rejection. Overall, our results open up a new avenue for enzyme immobilization into the skin layer of membranes for designing high-efficient biocatalytic NF membranes for MPs removal.

Original languageEnglish
Article number118514
JournalJournal of Membrane Science
Volume615
DOIs
Publication statusPublished - Dec 1 2020
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2020 Elsevier B.V.

ASJC Scopus Subject Areas

  • Biochemistry
  • General Materials Science
  • Physical and Theoretical Chemistry
  • Filtration and Separation

Keywords

  • Biocatalytic nanofiltration
  • Enzyme immobilization
  • Laccase
  • Layer-by-layer assembly
  • Micropollutants

Fingerprint

Dive into the research topics of 'Layer-by-layer assembly based low pressure biocatalytic nanofiltration membranes for micropollutants removal'. Together they form a unique fingerprint.

Cite this