Abstract
Face recognition sees remarkable progress in recent years, and its performance has reached a very high level. Taking it to a next level requires substantially larger data, which would involve prohibitive annotation cost. Hence, exploiting unlabeled data becomes an appealing alternative. Recent works have shown that clustering unlabeled faces is a promising approach, often leading to notable performance gains. Yet, how to effectively cluster, especially on a large-scale (i.e. million-level or above) dataset, remains an open question. A key challenge lies in the complex variations of cluster patterns, which make it difficult for conventional clustering methods to meet the needed accuracy. This work explores a novel approach, namely, learning to cluster instead of relying on hand-crafted criteria. Specifically, we propose a framework based on graph convolutional network, which combines a detection and a segmentation module to pinpoint face clusters. Experiments show that our method yields significantly more accurate face clusters, which, as a result, also lead to further performance gain in face recognition.
Original language | English |
---|---|
Title of host publication | Proceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 |
Publisher | IEEE Computer Society |
Pages | 2293-2301 |
Number of pages | 9 |
ISBN (Electronic) | 9781728132938 |
DOIs | |
Publication status | Published - Jun 2019 |
Externally published | Yes |
Event | 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 - Long Beach, United States Duration: Jun 16 2019 → Jun 20 2019 |
Publication series
Name | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
Volume | 2019-June |
ISSN (Print) | 1063-6919 |
Conference
Conference | 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 |
---|---|
Country/Territory | United States |
City | Long Beach |
Period | 6/16/19 → 6/20/19 |
Bibliographical note
Publisher Copyright:© 2019 IEEE.
ASJC Scopus Subject Areas
- Software
- Computer Vision and Pattern Recognition
Keywords
- And Body Pose
- Categorization
- Deep Learning
- Face
- Gesture
- Grouping and Shape
- Recognition: Detection
- Retrieval
- Segmentation