Abstract
The training of many existing end-to-end steering angle prediction models heavily relies on steering angles as the supervisory signal. Without learning from much richer contexts, these methods are susceptible to the presence of sharp road curves, challenging traffic conditions, strong shadows, and severe lighting changes. In this paper, we considerably improve the accuracy and robustness of predictions through heterogeneous auxiliary networks feature mimicking, a new and effective training method that provides us with much richer contextual signals apart from steering direction. Specifically, we train our steering angle predictive model by distilling multi-layer knowledge from multiple heterogeneous auxiliary networks that perform related but different tasks, e.g., image segmentation or optical flow estimation. As opposed to multi-task learning, our method does not require expensive annotations of related tasks on the target set. This is made possible by applying contemporary off-the-shelf networks on the target set and mimicking their features in different layers after transformation. The auxiliary networks are discarded after training without affecting the runtime efficiency of our model. Our approach achieves a new state-of-the-art on Udacity and Comma.ai, outperforming the previous best by a large margin of 12.8% and 52.1%1, respectively. Encouraging results are also shown on Berkeley Deep Drive (BDD) dataset.
Original language | English |
---|---|
Title of host publication | 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 |
Publisher | AAAI press |
Pages | 8433-8440 |
Number of pages | 8 |
ISBN (Electronic) | 9781577358091 |
DOIs | |
Publication status | Published - 2019 |
Externally published | Yes |
Event | 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 - Honolulu, United States Duration: Jan 27 2019 → Feb 1 2019 |
Publication series
Name | 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 |
---|
Conference
Conference | 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 |
---|---|
Country/Territory | United States |
City | Honolulu |
Period | 1/27/19 → 2/1/19 |
Bibliographical note
Publisher Copyright:© 2019, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
ASJC Scopus Subject Areas
- Artificial Intelligence