Lifelong Learning via Progressive Distillation and Retrospection

Saihui Hou*, Xinyu Pan, Chen Change Loy, Zilei Wang, Dahua Lin

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

33 Citations (Scopus)

Abstract

Lifelong learning aims at adapting a learned model to new tasks while retaining the knowledge gained earlier. A key challenge for lifelong learning is how to strike a balance between the preservation on old tasks and the adaptation to a new one within a given model. Approaches that combine both objectives in training have been explored in previous works. Yet the performance still suffers from considerable degradation in a long sequence of tasks. In this work, we propose a novel approach to lifelong learning, which tries to seek a better balance between preservation and adaptation via two techniques: Distillation and Retrospection. Specifically, the target model adapts to the new task by knowledge distillation from an intermediate expert, while the previous knowledge is more effectively preserved by caching a small subset of data for old tasks. The combination of Distillation and Retrospection leads to a more gentle learning curve for the target model, and extensive experiments demonstrate that our approach can bring consistent improvements on both old and new tasks (Project page: http://mmlab.ie.cuhk.edu.hk/projects/lifelong/).

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2018 - 15th European Conference, 2018, Proceedings
EditorsVittorio Ferrari, Cristian Sminchisescu, Martial Hebert, Yair Weiss
PublisherSpringer Verlag
Pages452-467
Number of pages16
ISBN (Print)9783030012182
DOIs
Publication statusPublished - 2018
Externally publishedYes
Event15th European Conference on Computer Vision, ECCV 2018 - Munich, Germany
Duration: Sept 8 2018Sept 14 2018

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11207 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference15th European Conference on Computer Vision, ECCV 2018
Country/TerritoryGermany
CityMunich
Period9/8/189/14/18

Bibliographical note

Publisher Copyright:
© 2018, Springer Nature Switzerland AG.

ASJC Scopus Subject Areas

  • Theoretical Computer Science
  • General Computer Science

Keywords

  • Knowledge distillation
  • Lifelong learning
  • Retrospection

Cite this