Abstract
Lipid-based nanoparticles have emerged as a clinically viable platform technology to deliver nucleic acids for a wide range of healthcare applications. Within this scope, one of the most exciting areas of recent progress and future innovation potential lies in the material science of lipid-based nanoparticles, both to refine existing nanoparticle strategies and to develop new ones. Herein, the latest efforts to develop next-generation lipid-based nanoparticles are covered by taking a nanoarchitectonics perspective and the design, nucleic acid encapsulation methods, scalable production, and application prospects are critically analyzed for three classes of lipid-based nanoparticles: 1) traditional lipid nanoparticles (LNPs); 2) lipoplexes; and 3) bicelles. Particular focus is placed on rationalizing how molecular self-assembly principles enable advanced functionalities along with comparing and contrasting the different nanoarchitectures. The current development status of each class of lipid-based nanoparticle is also evaluated and possible future directions in terms of overcoming clinical translation challenges and realizing new application opportunities are suggested.
Original language | English |
---|---|
Article number | 2203669 |
Journal | Advanced Functional Materials |
Volume | 32 |
Issue number | 37 |
DOIs | |
Publication status | Published - Sept 12 2022 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2022 Wiley-VCH GmbH.
ASJC Scopus Subject Areas
- Electronic, Optical and Magnetic Materials
- General Chemistry
- Biomaterials
- General Materials Science
- Condensed Matter Physics
- Electrochemistry
Keywords
- drug delivery
- lipid nanoparticle
- microfluidics
- nanoarchitectonics
- vaccine