Abstract
Deep learning approaches have achieved great success in addressing the problem of optical flow estimation. The keys to success lie in the use of cost volume and coarse-to-fine flow inference. However, the matching problem becomes ill-posed when partially occluded or homogeneous regions exist in images. This causes a cost volume to contain outliers and affects the flow decoding from it. Besides, the coarse-to-fine flow inference demands an accurate flow initialization. Ambiguous correspondence yields erroneous flow fields and affects the flow inferences in subsequent levels. In this paper, we introduce LiteFlowNet3, a deep network consisting of two specialized modules, to address the above challenges. (1) We ameliorate the issue of outliers in the cost volume by amending each cost vector through an adaptive modulation prior to the flow decoding. (2) We further improve the flow accuracy by exploring local flow consistency. To this end, each inaccurate optical flow is replaced with an accurate one from a nearby position through a novel warping of the flow field. LiteFlowNet3 not only achieves promising results on public benchmarks but also has a small model size and a fast runtime.
Original language | English |
---|---|
Title of host publication | Computer Vision – ECCV 2020 - 16th European Conference 2020, Proceedings |
Editors | Andrea Vedaldi, Horst Bischof, Thomas Brox, Jan-Michael Frahm |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 169-184 |
Number of pages | 16 |
ISBN (Print) | 9783030585648 |
DOIs | |
Publication status | Published - 2020 |
Externally published | Yes |
Event | 16th European Conference on Computer Vision, ECCV 2020 - Glasgow, United Kingdom Duration: Aug 23 2020 → Aug 28 2020 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 12365 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 16th European Conference on Computer Vision, ECCV 2020 |
---|---|
Country/Territory | United Kingdom |
City | Glasgow |
Period | 8/23/20 → 8/28/20 |
Bibliographical note
Publisher Copyright:© 2020, Springer Nature Switzerland AG.
ASJC Scopus Subject Areas
- Theoretical Computer Science
- General Computer Science