Magnetic Janus particles synthesized using droplet micro-magnetofluidic techniques for protein detection

V. B. Varma, R. G. Wu, Z. P. Wang, R. V. Ramanujan*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

41 Citations (Scopus)

Abstract

Magnetic droplets on a microfluidic platform can act as micro-robots, providing wireless, remote, and programmable control. This field of droplet micro-magnetofluidics (DMMF) is useful for droplet merging, mixing and synthesis of Janus structures. Specifically, magnetic Janus particles (MJP) are useful for protein and DNA detection as well as magnetically controlled bioprinting. However, synthesis of MJP with control of the functional phases is a challenge. Hence, we developed a high flow rate, surfactant-free, wash-less method to synthesize MJP by integration of DMMF with hybrid magnetic fields. The effects of the flow rate, flow rate ratio, and hybrid magnetic field on the magnetic component of the Janus droplets and the MJP were investigated. It was found that the magnetization, particle size, and phase distribution inside MJP could be readily tuned by the flow rates and the magnetic field. The magnetic component in the MJP could be concentrated after mixing at flow rate ratio values less than 7.5 and flow rates less than 3 ml h-1. The experimental results and our simulations are in good agreement. The synthesized magnetic-fluorescent Janus particles were used for protein detection, with BSA as a model protein.

Original languageEnglish
Pages (from-to)3514-3525
Number of pages12
JournalLab on a Chip
Volume17
Issue number20
DOIs
Publication statusPublished - Oct 21 2017
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2017 The Royal Society of Chemistry.

ASJC Scopus Subject Areas

  • Bioengineering
  • Biochemistry
  • General Chemistry
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Magnetic Janus particles synthesized using droplet micro-magnetofluidic techniques for protein detection'. Together they form a unique fingerprint.

Cite this