Abstract
In the field of sportswear, the structure and morphology of textiles are of great importance to achieve good moisture transport and low friction, which are two critical comfort-related properties. To improve these properties, dual-layer nanofibrous nonwoven mats were studied in this work. Core-shell nanofibers with a polyacrylonitrile (PAN)-rich core and a poly(vinylidene fluoride) (PVDF)-rich shell were fabricated by single-spinneret electrospinning and used as the inner layer of the dual-layer mats, while thick base-treated Cellulose Acetate (CA) nanofibrous mats were used as the outer layer. The core-located PAN and a small amount of PAN on the PAN/PVDF nanofiber surface ensure good moisture transport through the nanofibrous mats. The synergistic combination of a considerably hydrophobic PAN/PVDF inner layer and a highly hydrophilic CA outer layer induces a strong push-pull effect, resulting in efficient moisture transport from the inner to the outer layer. Furthermore, the fluorine-rich PVDF shell of the inner layer touches the human skin and provides a lubricating effect to enhance comfortability. This design provides a promising route for sports textiles with both good moisture-wicking and low friction.
Original language | English |
---|---|
Pages (from-to) | 82-87 |
Number of pages | 6 |
Journal | Materials and Design |
Volume | 88 |
DOIs | |
Publication status | Published - Dec 25 2015 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2015 Elsevier Ltd.
ASJC Scopus Subject Areas
- General Materials Science
- Mechanics of Materials
- Mechanical Engineering
Keywords
- Core-shell
- Electrospinning
- Low friction
- Moisture transport
- Textile