Materials design towards sport textiles with low-friction and moisture-wicking dual functions

Yuliang Dong, Junhua Kong, Chenzhong Mu, Chenyang Zhao, Noreen L. Thomas, Xuehong Lu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

70 Citations (Scopus)

Abstract

In the field of sportswear, the structure and morphology of textiles are of great importance to achieve good moisture transport and low friction, which are two critical comfort-related properties. To improve these properties, dual-layer nanofibrous nonwoven mats were studied in this work. Core-shell nanofibers with a polyacrylonitrile (PAN)-rich core and a poly(vinylidene fluoride) (PVDF)-rich shell were fabricated by single-spinneret electrospinning and used as the inner layer of the dual-layer mats, while thick base-treated Cellulose Acetate (CA) nanofibrous mats were used as the outer layer. The core-located PAN and a small amount of PAN on the PAN/PVDF nanofiber surface ensure good moisture transport through the nanofibrous mats. The synergistic combination of a considerably hydrophobic PAN/PVDF inner layer and a highly hydrophilic CA outer layer induces a strong push-pull effect, resulting in efficient moisture transport from the inner to the outer layer. Furthermore, the fluorine-rich PVDF shell of the inner layer touches the human skin and provides a lubricating effect to enhance comfortability. This design provides a promising route for sports textiles with both good moisture-wicking and low friction.

Original languageEnglish
Pages (from-to)82-87
Number of pages6
JournalMaterials and Design
Volume88
DOIs
Publication statusPublished - Dec 25 2015
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2015 Elsevier Ltd.

ASJC Scopus Subject Areas

  • General Materials Science
  • Mechanics of Materials
  • Mechanical Engineering

Keywords

  • Core-shell
  • Electrospinning
  • Low friction
  • Moisture transport
  • Textile

Fingerprint

Dive into the research topics of 'Materials design towards sport textiles with low-friction and moisture-wicking dual functions'. Together they form a unique fingerprint.

Cite this