Abstract
The synthesis of natural emotional reactions is an essential criterion in vivid talking-face video generation. This criterion is nevertheless seldom taken into consideration in previous works due to the absence of a large-scale, high-quality emotional audio-visual dataset. To address this issue, we build the Multi-view Emotional Audio-visual Dataset (MEAD), a talking-face video corpus featuring 60 actors and actresses talking with eight different emotions at three different intensity levels. High-quality audio-visual clips are captured at seven different view angles in a strictly-controlled environment. Together with the dataset, we release an emotional talking-face generation baseline that enables the manipulation of both emotion and its intensity. Our dataset could benefit a number of different research fields including conditional generation, cross-modal understanding and expression recognition. Code, model and data are publicly available on our project page‡ ‡https://wywu.github.io/projects/MEAD/MEAD.html.
Original language | English |
---|---|
Title of host publication | Computer Vision – ECCV 2020 - 16th European Conference 2020, Proceedings |
Editors | Andrea Vedaldi, Horst Bischof, Thomas Brox, Jan-Michael Frahm |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 700-717 |
Number of pages | 18 |
ISBN (Print) | 9783030585884 |
DOIs | |
Publication status | Published - 2020 |
Externally published | Yes |
Event | 16th European Conference on Computer Vision, ECCV 2020 - Glasgow, United Kingdom Duration: Aug 23 2020 → Aug 28 2020 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 12366 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 16th European Conference on Computer Vision, ECCV 2020 |
---|---|
Country/Territory | United Kingdom |
City | Glasgow |
Period | 8/23/20 → 8/28/20 |
Bibliographical note
Publisher Copyright:© 2020, Springer Nature Switzerland AG.
ASJC Scopus Subject Areas
- Theoretical Computer Science
- General Computer Science
Keywords
- Generative adversarial networks
- Representation disentanglement
- Video generation