Abstract
Owing to the high theoretical sodiation capacities, intermetallic alloy anodes have attracted considerable interest as electrodes for next-generation sodium-ion batteries (SIBs). Here, we demonstrate the fabrication of intermetallic Fe-Sb alloy anode for SIBs via a high-throughput and industrially viable melt-spinning process. The earth-abundant and low-cost Fe-Sb-based alloy anode exhibits excellent cycling stability with nearly 466 mAh g-1 sodiation capacity at a specific current of 50 mA g-1 with 95% capacity retention after 80 cycles. Moreover, the alloy anode displayed outstanding rate performance with ∼300 mAh g-1 sodiation capacity at 1 A g-1. The crystalline features of the melt-spun fibers aid in the exceptional electrochemical performance of the alloy anode. Further, the feasibility of the alloy anode for real-life applications was demonstrated in a sodium-ion full-cell configuration which could deliver a sodiation capacity of over 300 mAh g-1 (based on anode) at 50 mA g-1 with more than 99% Coulombic efficiency. The results further exhort the prospects of melt-spun alloy anodes to realize fully functional sodium-ion batteries.
Original language | English |
---|---|
Pages (from-to) | 39399-39406 |
Number of pages | 8 |
Journal | ACS Applied Materials and Interfaces |
Volume | 9 |
Issue number | 45 |
DOIs | |
Publication status | Published - Nov 15 2017 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2017 American Chemical Society.
ASJC Scopus Subject Areas
- General Materials Science
Keywords
- battery
- coin-cell
- energy storage
- Fe-Sb anode
- intermetallic alloy electrodes
- melt-spinning
- sodium-ion batteries