TY - GEN
T1 - Modeling and comparison of cantilevered piezoelectric energy harvester with segmented and continuous electrode configurations
AU - Wang, Hongyan
AU - Tang, Lihua
AU - Shan, Xiaobiao
AU - Xie, Tao
AU - Yang, Yaowen
PY - 2013
Y1 - 2013
N2 - Continuous electrode configuration (CEC) has been widely used in piezoelectric energy harvesters (PEHs). A PEH with CEC works around the first resonance efficiently but it suffers from low efficiency due to cancellation effect around higher modes. The use of segmented electrode configuration (SEC) can avoid the cancellation effect around higher modes. To achieve this, the output from each electrode pair on the opposite sides of the strain node needs to be rectified separately. In such a case, the theoretical formulation for power estimation becomes challenging because of some nonlinear electrical components included. In this paper, a method based on combining the equivalent circuit model (ECM) and the circuit simulation is proposed to estimate the power outputs of the cantilevered PEH with the SEC. First, the parameters in the ECM considering multiple modes of the PEH with the SEC are identified from the finite element analysis. The ECM is then established and simulated in the SPICE software. The optimal power outputs from the PEH with the SEC are compared with those from the PEH with the CEC. The results illustrate the advantage of the SEC to enhance the power outputs of a PEH at higher resonance frequencies.
AB - Continuous electrode configuration (CEC) has been widely used in piezoelectric energy harvesters (PEHs). A PEH with CEC works around the first resonance efficiently but it suffers from low efficiency due to cancellation effect around higher modes. The use of segmented electrode configuration (SEC) can avoid the cancellation effect around higher modes. To achieve this, the output from each electrode pair on the opposite sides of the strain node needs to be rectified separately. In such a case, the theoretical formulation for power estimation becomes challenging because of some nonlinear electrical components included. In this paper, a method based on combining the equivalent circuit model (ECM) and the circuit simulation is proposed to estimate the power outputs of the cantilevered PEH with the SEC. First, the parameters in the ECM considering multiple modes of the PEH with the SEC are identified from the finite element analysis. The ECM is then established and simulated in the SPICE software. The optimal power outputs from the PEH with the SEC are compared with those from the PEH with the CEC. The results illustrate the advantage of the SEC to enhance the power outputs of a PEH at higher resonance frequencies.
KW - Cantilever
KW - Electrode configuration
KW - Equivalent circuit model
KW - Piezoelectric energy harvester
UR - http://www.scopus.com/inward/record.url?scp=84878362829&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84878362829&partnerID=8YFLogxK
U2 - 10.1117/12.2013816
DO - 10.1117/12.2013816
M3 - Conference contribution
AN - SCOPUS:84878362829
SN - 9780819494719
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Active and Passive Smart Structures and Integrated Systems 2013
T2 - Active and Passive Smart Structures and Integrated Systems 2013
Y2 - 10 March 2013 through 14 March 2013
ER -