TY - GEN
T1 - Modeling and experiment of a multiple-DOF piezoelectric energy harvester
AU - Tang, Lihua
AU - Yang, Yaowen
AU - Wu, Hao
PY - 2012
Y1 - 2012
N2 - Vibration energy harvesters have been usually designed as single-degree-of-freedom (1DOF) systems. The fact that such harvesters are only efficient near sole resonance limits their applicability in frequency-variant and random vibration scenarios. In this paper, a novel multiple-DOF piezoelectric energy harvester model (PEHM) is developed, which comprises a primary mass and n parasitic masses. The parasitic masses are independent of each other but attached to the primary mass. The piezoelectric element is placed between the primary mass and the base for energy generation. First, a 2DOF model is analyzed and characterized. Through parametric analysis, it is found that with a slight increase of the overall weight to the original 1DOF harvester (without parasitic masses), two close and effective peaks or one effective peak with significantly enhanced magnitude can be achieved in the power response. Subsequently, the 2DOF model is generalized to an n-DOF model and its analytical solution is derived. This solution provides a convenient tool for parametric study and design of a multiple-DOF piezoelectric energy harvester (PEH). Useful multimodal energy harvesting can be achieved with a slight increase of the overall weight. Finally, a prototype of the proposed multiple-DOF model is devised for proof of concept.
AB - Vibration energy harvesters have been usually designed as single-degree-of-freedom (1DOF) systems. The fact that such harvesters are only efficient near sole resonance limits their applicability in frequency-variant and random vibration scenarios. In this paper, a novel multiple-DOF piezoelectric energy harvester model (PEHM) is developed, which comprises a primary mass and n parasitic masses. The parasitic masses are independent of each other but attached to the primary mass. The piezoelectric element is placed between the primary mass and the base for energy generation. First, a 2DOF model is analyzed and characterized. Through parametric analysis, it is found that with a slight increase of the overall weight to the original 1DOF harvester (without parasitic masses), two close and effective peaks or one effective peak with significantly enhanced magnitude can be achieved in the power response. Subsequently, the 2DOF model is generalized to an n-DOF model and its analytical solution is derived. This solution provides a convenient tool for parametric study and design of a multiple-DOF piezoelectric energy harvester (PEH). Useful multimodal energy harvesting can be achieved with a slight increase of the overall weight. Finally, a prototype of the proposed multiple-DOF model is devised for proof of concept.
KW - Multiple-DOF
KW - Piezoelectric energy harvester
KW - Vibration
UR - http://www.scopus.com/inward/record.url?scp=84861485180&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84861485180&partnerID=8YFLogxK
U2 - 10.1117/12.914764
DO - 10.1117/12.914764
M3 - Conference contribution
AN - SCOPUS:84861485180
SN - 9780819489982
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Active and Passive Smart Structures and Integrated Systems 2012
T2 - Active and Passive Smart Structures and Integrated Systems 2012
Y2 - 12 March 2012 through 15 March 2012
ER -