Modulating the Electronic Structure of Cobalt in Molecular Catalysts via Coordination Environment Regulation for Highly Efficient Heterogeneous Nitrate Reduction

Libo Sun, Chencheng Dai, Tianjiao Wang, Xindie Jin, Zhichuan J. Xu, Xin Wang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

35 Citations (Scopus)

Abstract

Ammonia (NH3) is pivotal in modern industry and represents a promising next-generation carbon-free energy carrier. Electrocatalytic nitrate reduction reaction (eNO3RR) presents viable solutions for NH3 production and removal of ambient nitrate pollutants. However, the development of eNO3RR is hindered by lacking the efficient electrocatalysts. To address this challenge, we synthesized a series of macrocyclic molecular catalysts for the heterogeneous eNO3RR. These materials possess different coordination environments around metal centers by surrounding subunits. Consequently, electronic structures of the active centers can be altered, enabling tunable activity towards eNO3RR. Our investigation reveals that metal center with an N2(pyrrole)-N2(pyridine) configuration demonstrates superior activity over the others and achieves a high NH3 Faradaic efficiency (FE) of over 90 % within the tested range, where the highest FE of approximately 94 % is obtained. Furthermore, it achieves a production rate of 11.28 mg mgcat−1 h−1, and a turnover frequency of up to 3.28 s−1. Further tests disclose that these molecular catalysts with diverse coordination environments showed different magnetic moments. Theoretical calculation results indicate that variated coordination environments can result in a d-band center variation which eventually affects rate-determining step energy and calculated magnetic moments, thus establishing a correlation between electronic structure, experimental activity, and computational parameters.

Original languageEnglish
Article numbere202320027
JournalAngewandte Chemie - International Edition
Volume63
Issue number15
DOIs
Publication statusPublished - Apr 8 2024
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.

ASJC Scopus Subject Areas

  • Catalysis
  • General Chemistry

Keywords

  • electrocatalysis
  • electrocatalytic nitrate reduction
  • heterogeneous molecular catalysts
  • macrocyclic
  • molecular catalysts

Cite this