Abstract
Regulation of indoor environments like temperature and humidity consumes enormous energy and brings environmental crises. Therefore, the development of energy-free approaches is critical as it simultaneously improves living comfort and decreases the carbon footprint. Here we report a moisture-modulated strategy to access switchable thermal regulation by tuning solar radiative scattering through manipulation of the refractive index difference (Δn) of a porous surface. This approach is based on a double-layered film containing an upper porous polymer layer and a lower photothermal layer. Via moisture absorption and evaporation, the film performs a reversible thermal switching between solar heating and radiative cooling, allowing efficient space temperature manipulation in the range from + 12.0 to − 8.0 °C. Besides, the moisture-modulated characteristic also offers an opportunity for solar dehumidification by automatically absorbing ambient moisture while mitigating temperature rise. This work bridges a thermal nexus between moisture with solar radiation, while providing a guideline for energy-free indoor environment manipulation.
Original language | English |
---|---|
Article number | 147621 |
Journal | Chemical Engineering Journal |
Volume | 479 |
DOIs | |
Publication status | Published - Jan 1 2024 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2023 Elsevier B.V.
ASJC Scopus Subject Areas
- General Chemistry
- Environmental Chemistry
- General Chemical Engineering
- Industrial and Manufacturing Engineering
Keywords
- Energy-neutral
- Moisture adaptive thermal regulation
- Solar dehumidification
- Switchable refractive index difference
- Tunable solar scattering