Abstract
At room temperature, we observe the self assembly of nanoclusters in an amorphous matrix using a vacuum deposition technique. Self-assembled ZnO nanoclusters embedded in hard diamond-like amorphous carbon thin films, deposited by high vacuum Filtered Cathodic Vacuum Arc (FCVA) technique at room temperature without post-processing, have been observed. A selective self assembly of metal and oxygen ions in a 3-element plasma was observed. XPS distinctly showed presence of ZnO and DLC-mixture in 5, 7 and 10 at.% Zn (in target) films while maintaining high sp3 content. This in turn improved the Young's modulus value of the ZnO nanoclusters embedded in DLC film (~ 220 GPa) compared to bulk ZnO (~ 110 GPa). Films with ZnO detected were observed to exhibit absorption edge at 377 nm monochromatic UV light emissions. This corresponded to a band gap value of about 3.30 eV. The emission with greatest intensity (after normalization) was detected from 10 at.% Zn (in target) film where presence of ZnO nanoclusters (~ 40 nm) in DLC matrix were confirmed by TEM. This showed that well-defined crystalline ZnO nanoclusters contributed to strong PL signal. Strong monochromatic emissions detected hinted that no defect states were present.
Original language | English |
---|---|
Pages (from-to) | 167-170 |
Number of pages | 4 |
Journal | Diamond and Related Materials |
Volume | 17 |
Issue number | 2 |
DOIs | |
Publication status | Published - Feb 2008 |
Externally published | Yes |
ASJC Scopus Subject Areas
- Electronic, Optical and Magnetic Materials
- General Chemistry
- Mechanical Engineering
- Materials Chemistry
- Electrical and Electronic Engineering
Keywords
- Cathodic arc discharge
- Diamond-like carbon
- Nanoparticles
- Optical properties characterization