Abstract
We present MosaicFusion, a simple yet effective diffusion-based data augmentation approach for large vocabulary instance segmentation. Our method is training-free and does not rely on any label supervision. Two key designs enable us to employ an off-the-shelf text-to-image diffusion model as a useful dataset generator for object instances and mask annotations. First, we divide an image canvas into several regions and perform a single round of diffusion process to generate multiple instances simultaneously, conditioning on different text prompts. Second, we obtain corresponding instance masks by aggregating cross-attention maps associated with object prompts across layers and diffusion time steps, followed by simple thresholding and edge-aware refinement processing. Without bells and whistles, our MosaicFusion can produce a significant amount of synthetic labeled data for both rare and novel categories. Experimental results on the challenging LVIS long-tailed and open-vocabulary benchmarks demonstrate that MosaicFusion can significantly improve the performance of existing instance segmentation models, especially for rare and novel categories. Code: https://github.com/Jiahao000/MosaicFusion.
Original language | English |
---|---|
Pages (from-to) | 1456-1475 |
Number of pages | 20 |
Journal | International Journal of Computer Vision |
Volume | 133 |
Issue number | 4 |
DOIs | |
Publication status | Published - Apr 2025 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
ASJC Scopus Subject Areas
- Software
- Computer Vision and Pattern Recognition
- Artificial Intelligence
Keywords
- Instance segmentation
- Long tail
- Open vocabulary
- Text-to-image diffusion models