Abstract
We study RF-enabled wireless energy transfer (WET) via energy beamforming, from a multi-antenna energy transmitter (ET) to multiple energy receivers (ERs) in a backscatter communication system such as RFID. The acquisition of the forward-channel (i.e., ET-to-ER) state information (F-CSI) at the ET (or RFID reader) is challenging, since the ERs (or RFID tags) are typically too energy-and-hardware-constrained to estimate or feedback the F-CSI. The ET leverages its observed backscatter signals to estimate the backscatter-channel (i.e., ET-to-ER-to-ET) state information (BS-CSI) directly. We first analyze the harvested energy obtained using the estimated BS-CSI. Furthermore, we optimize the resource allocation to maximize the total utility of harvested energy. For WET to single ER, we obtain the optimal channel-training energy in a semiclosed form. For WET to multiple ERs, we optimize the channel-training energy and the energy allocation weights for different energy beams. For the straightforward weighted-sum-energy (WSE) maximization, the optimal WET scheme is shown to use only one energy beam, which leads to unfairness among ERs and motivates us to consider the complicated proportional-fair-energy (PFE) maximization. For PFE maximization, we show that it is a biconvex problem, and propose a block-coordinate-descent-based algorithm to find the close-to-optimal solution. Numerical results show that with the optimized solutions, the harvested energy suffers slight reduction of less than 10%, compared to that obtained using the perfect F-CSI.
Original language | English |
---|---|
Article number | 7274644 |
Pages (from-to) | 2974-2987 |
Number of pages | 14 |
Journal | IEEE Journal on Selected Areas in Communications |
Volume | 33 |
Issue number | 12 |
DOIs | |
Publication status | Published - Dec 2015 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 1983-2012 IEEE.
ASJC Scopus Subject Areas
- Computer Networks and Communications
- Electrical and Electronic Engineering
Keywords
- Backscatter communication systems
- biconvex optimization
- channel estimation
- energy beamforming
- proportional fairness
- resource allocation
- wireless energy transfer