Nanoplasmonic Ruler for Measuring Separation Distance between Supported Lipid Bilayers and Oxide Surfaces

Abdul Rahim Ferhan, Barbora Špačková, Joshua A. Jackman, Gamaliel J. Ma, Tun Naw Sut, Jiří Homola, Nam Joon Cho*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)

Abstract

Unraveling the details of how supported lipid bilayers (SLBs) are coupled to oxide surfaces is experimentally challenging, and there is an outstanding need to develop highly surface-sensitive measurement strategies to determine SLB separation distances. Indeed, subtle variations in separation distance can be associated with significant differences in bilayer-substrate interaction energy. Herein, we report a nanoplasmonic ruler strategy to measure the absolute separation distance between SLBs and oxide surfaces. A localized surface plasmon resonance (LSPR) sensor was employed to track SLB formation onto titania- and silica-coated gold nanodisk arrays. To interpret measurement data, an analytical model relating the LSPR measurement response to bilayer-substrate separation distance was developed based on finite-difference time-domain (FDTD) simulations and theoretical calculations. The results indicate that there is a larger separation distance between SLBs and titania surfaces than silica surfaces, and the trend was consistent across three tested lipid compositions. We discuss these findings within the context of the interfacial forces underpinning bilayer-substrate interactions, and the nanoplasmonic ruler strategy provides the first direct experimental evidence comparing SLB separation distances on titania and silica surfaces.

Original languageEnglish
Pages (from-to)12503-12511
Number of pages9
JournalAnalytical Chemistry
Volume90
Issue number21
DOIs
Publication statusPublished - Nov 6 2018
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2018 American Chemical Society.

ASJC Scopus Subject Areas

  • Analytical Chemistry

Fingerprint

Dive into the research topics of 'Nanoplasmonic Ruler for Measuring Separation Distance between Supported Lipid Bilayers and Oxide Surfaces'. Together they form a unique fingerprint.

Cite this