Abstract
LaFe11.6Si1.4/10wt%PrxCo7 (x = 1, 2, 3, 5) magnetocaloric composites were prepared by spark plasma sintering (SPS) and diffusion annealing. The phase composition, microstructure, magnetic, mechanical and thermal properties were studied. The addition of PrxCo7 binder can be used to tune the phase fraction and magnetic properties. Pr2Co7 binder promoted the formation of 1:13 phase. LaFe11.6Si1.4/10wt%Pr2Co7 composites possess the highest 1:13 content (~ 89 wt%). The Curie temperature (TC) can be tuned in the technologically useful range of 280–347 K. Relatively large maximum magnetic entropy change (− ∆SM)max (2 T) of 1.45−3.16 J/kg K and refrigeration capacity (RC) (2 T) of 117–137 J/kg were obtained. These composites exhibit superior compressive strength of 1005–1250 MPa and excellent thermal conductivity of 17.68–27.77 W/m K. Thus, LaFe11.6Si1.4/10wt%PrxCo7 magnetocaloric composites possess excellent mechanical and thermal properties, with adjustable magnetic properties and have the potential application for near room temperature magnetic refrigeration.
Original language | English |
---|---|
Pages (from-to) | 11253-11264 |
Number of pages | 12 |
Journal | Journal of Materials Science |
Volume | 57 |
Issue number | 24 |
DOIs | |
Publication status | Published - Jun 2022 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
ASJC Scopus Subject Areas
- General Materials Science
- Mechanics of Materials
- Mechanical Engineering