Abstract
SU-8 is an octafunctional epoxy-based negative resist supplied with a reactive diluent, gamma-butyrolactone (GBL). This paper characterizes the network properties and acid degradability of cured SU-8 resists with varying GBL monomer content and ultraviolet (UV) irradiation time. The SU-8/GBL network structure was characterized by Fourier transform infrared (FTIR) spectroscopy, 13C nuclear magnetic resonance (NMR) spectroscopy and gas chromatography-mass spectrometry (GC/MS). GBL was found to copolymerize with epoxy to bridge two neighbouring epoxy groups and does not homopolymerize. The maximum GBL:SU-8 molar ratio whereby all GBL fully reacted with available epoxy functionalities in the network was found to be 8:1. Excess GBL beyond the maximum GBL:SU-8 ratio remains in the network as a plasticizer. GBL content and UV irradiation time affect glass transition temperature (Tg), epoxy conversion and molecular weight between cross-links (Mc) which were measured by dynamic mechanical analysis (DMA) and FTIR. The mechanism of cross-linked network acid degradation was found to be surface erosion. Lower epoxy conversion, higher Mc and higher GBL content resulted in a higher dissolution rate, which can be exploited in applications requiring SU-8 removal. A patterned SU-8 grating with relatively high-GBL content (10%) was successfully used as a template for Cu electroforming.
Original language | English |
---|---|
Pages (from-to) | 609-620 |
Number of pages | 12 |
Journal | Sensors and Actuators, B: Chemical |
Volume | 131 |
Issue number | 2 |
DOIs | |
Publication status | Published - May 14 2008 |
Externally published | Yes |
ASJC Scopus Subject Areas
- Electronic, Optical and Magnetic Materials
- Instrumentation
- Condensed Matter Physics
- Surfaces, Coatings and Films
- Metals and Alloys
- Electrical and Electronic Engineering
- Materials Chemistry
Keywords
- Acid degradation
- Gamma-butyrolactone
- Kinetics
- Network
- Reactive solvent
- SU-8