Next-Generation Multifunctional Electrochromic Devices

Guofa Cai, Jiangxin Wang, Pooi See Lee*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

586 Citations (Scopus)

Abstract

ConspectusThe rational design and exploration of electrochromic devices will find a wide range of applications in smart windows for energy-efficient buildings, low-power displays, self-dimming rear mirrors for automobiles, electrochromic e-skins, and so on. Electrochromic devices generally consist of multilayer structures with transparent conductors, electrochromic films, ion conductors, and ion storage films. Synthetic strategies and new materials for electrochromic films and transparent conductors, comprehensive electrochemical kinetic analysis, and novel device design are areas of active study worldwide. These are believed to be the key factors that will help to significantly improve the electrochromic performance and extend their application areas.In this Account, we present our strategies to design and fabricate electrochromic devices with high performance and multifunctionality. We first describe the synthetic strategies, in which a porous tungsten oxide (WO3) film with nearly ideal optical modulation and fast switching was prepared by a pulsed electrochemical deposition method. Multiple strategies, such as sol-gel/inkjet printing methods, hydrothermal/inkjet printing methods, and a novel hybrid transparent conductor/electrochromic layer have been developed to prepare high-performance electrochromic films. We then summarize the recent advances in transparent conductors and ion conductor layers, which play critial roles in electrochromic devices. Benefiting from the developments of soft transparent conductive substrates, highly deformable electrochromic devices that are flexible, foldable, stretchable, and wearable have been achieved. These emerging devices have great potential in applications such as soft displays, electrochromic e-skins, deformable electrochromic films, and so on. We finally present a concept of multifunctional smart glass, which can change its color to dynamically adjust the daylight and solar heat input of the building or protect the users' privacy during the daytime. Energy can also be stored in the smart windows during the daytime simultaneously and be discharged for use in the evening.These results reveal that the electrochromic devices have potential applications in a wide range of areas. We hope that this Account will promote further efforts toward fundamental research on electrochromic materials and the development of new multifunctional electrochromic devices to meet the growing demands for next-generation electronic systems.

Original languageEnglish
Pages (from-to)1469-1476
Number of pages8
JournalAccounts of Chemical Research
Volume49
Issue number8
DOIs
Publication statusPublished - Aug 16 2016
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2016 American Chemical Society.

ASJC Scopus Subject Areas

  • General Chemistry

Fingerprint

Dive into the research topics of 'Next-Generation Multifunctional Electrochromic Devices'. Together they form a unique fingerprint.

Cite this