Abstract
3D plasmonic colloidosomes are superior SERS sensors owing to their high sensitivity and excellent tolerance to laser misalignment. Herein, we incorporate plasmonic colloidosomes in a microfluidic channel for online SERS detection. Our method resolves the poor signal reproducibility and inter-sample contamination in the existing online SERS platforms. Our flow system offers rapid and continuous online detection of 20 samples in less than 5 min with excellent signal reproducibility. The isolated colloidosomes prevent cross-sample and channel contamination, allowing accurate quantification of samples over a concentration range of five orders of magnitude. Our system demonstrates high-resolution multiplex detection with fully preserved signal and Raman features of individual analytes in a mixture. High-throughput multi-assay analysis is performed, which highlights that our system is capable of rapid identification and quantification of a sequence of samples containing various analytes and concentrations.
Original language | English |
---|---|
Pages (from-to) | 5565-5569 |
Number of pages | 5 |
Journal | Angewandte Chemie - International Edition |
Volume | 56 |
Issue number | 20 |
DOIs | |
Publication status | Published - May 8 2017 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ASJC Scopus Subject Areas
- Catalysis
- General Chemistry
Keywords
- colloidosomes
- microfluidics
- multiplex assays
- optical detection
- SERS