Photothermal modulated dielectric elastomer actuator for resilient soft robots

Matthew Wei Ming Tan, Hyunwoo Bark, Gurunathan Thangavel, Xuefei Gong, Pooi See Lee*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

74 Citations (Scopus)

Abstract

Soft robots need to be resilient to extend their operation under unpredictable environments. While utilizing elastomers that are tough and healable is promising to achieve this, mechanical enhancements often lead to higher stiffness that deteriorates actuation strains. This work introduces liquid metal nanoparticles into carboxyl polyurethane elastomer to sensitize a dielectric elastomer actuator (DEA) with responsiveness to electric fields and NIR light. The nanocomposite can be healed under NIR illumination to retain high toughness (55 MJ m−3) and can be recycled at lower temperatures and shorter durations due to nanoparticle-elastomer interactions that minimize energy barriers. During co-stimulation, photothermal effects modulate the elastomer moduli to lower driving electric fields of DEAs. Bilayer configurations display synergistic actuation under co-stimulation to improve energy densities, and enable a DEA crawler to achieve longer strides. This work paves the way for a generation of soft robots that achieves both resilience and high actuation performance.

Original languageEnglish
Article number6769
JournalNature Communications
Volume13
Issue number1
DOIs
Publication statusPublished - Dec 2022
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2022, The Author(s).

ASJC Scopus Subject Areas

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Photothermal modulated dielectric elastomer actuator for resilient soft robots'. Together they form a unique fingerprint.

Cite this