Abstract
Timely detection of toxic vapor is vital for safeguarding people's lives. Herein, we design a plasmonic nose based on a zeolitic imidazolate framework (ZIF)-encapsulated Ag nanocube array for ultratrace recognition of VOC vapor. The plasmonic nose enables in situ adsorption kinetics and recognition of various VOCs at ppm levels, eliminating false positives. Our approach provides a paradigm shift to next-generation, effective and specific gas sensors.
Original language | English |
---|---|
Pages (from-to) | 2546-2549 |
Number of pages | 4 |
Journal | Chemical Communications |
Volume | 54 |
Issue number | 20 |
DOIs | |
Publication status | Published - 2018 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2018 The Royal Society of Chemistry.
ASJC Scopus Subject Areas
- Electronic, Optical and Magnetic Materials
- Catalysis
- Ceramics and Composites
- General Chemistry
- Surfaces, Coatings and Films
- Metals and Alloys
- Materials Chemistry