Abstract
Microfluidic droplet reactors have many potential uses, from analytical to synthesis. Stable operation requires preferential wetting of the channel surface by the continuous phase which is often not fulfilled by materials commonly used for lab-on-chip devices. Here we show that a silica nanoparticle (SiNP) layer coated onto a Poly(methyl methacrylate) (PMMA) and other thermoplastics surface enhances its wetting properties by creating nanoroughness, and allows simple grafting of hydrocarbon chains through silane chemistry. Using the unusual stability of silica sols at their isoelectric point, a dense SiNP layer is adsorbed onto PMMA and renders the surface superhydrophilic. Subsequently, a self-assembled dodecyltrichlorosilane (DTS) monolayer yields a superhydrophobic surface that allows the repeatable generation of aqueous droplets in a hexadecane continuous phase without surfactant addition. A SiNP-DTS modified chip has been used to monitor bacterial viability with a resazurin assay. The whole process involving sequential reagents injection, and multiplexed droplet fluorescence intensity monitoring is carried out on chip. Metabolic inhibition of the anaerobe Enterococcus faecalis by 30 mg L-1 of NiCl2 was detected in 5 min.
Original language | English |
---|---|
Pages (from-to) | 13801-13811 |
Number of pages | 11 |
Journal | ACS Applied Materials and Interfaces |
Volume | 9 |
Issue number | 15 |
DOIs | |
Publication status | Published - Apr 19 2017 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2017 American Chemical Society.
ASJC Scopus Subject Areas
- General Materials Science
Keywords
- anaerobic toxicity
- microfluidic
- PMMA
- resazurin
- silica nanoparticles
- superhydrophobic