PolyNet: A pursuit of structural diversity in very deep networks

Xingcheng Zhang, Zhizhong Li, Chen Change Loy, Dahua Lin

Research output: Chapter in Book/Report/Conference proceedingConference contribution

171 Citations (Scopus)

Abstract

A number of studies have shown that increasing the depth or width of convolutional networks is a rewarding approach to improve the performance of image recognition. In our study, however, we observed difficulties along both directions. On one hand, the pursuit for very deep networks is met with a diminishing return and increased training difficulty; on the other hand, widening a network would result in a quadratic growth in both computational cost and memory demand. These difficulties motivate us to explore structural diversity in designing deep networks, a new dimension beyond just depth and width. Specifically, we present a new family of modules, namely the PolyInception, which can be flexibly inserted in isolation or in a composition as replacements of different parts of a network. Choosing Poly- Inception modules with the guidance of architectural efficiency can improve the expressive power while preserving comparable computational cost. The Very Deep PolyNet1, designed following this direction, demonstrates substantial improvements over the state-of-the-art on the ILSVRC 2012 benchmark. Compared to Inception-ResNet-v2, it reduces the top-5 validation error on single crops from 4.9% to 4.25%, and that on multi-crops from 3.7% to 3.45%.

Original languageEnglish
Title of host publicationProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3900-3908
Number of pages9
ISBN (Electronic)9781538604571
DOIs
Publication statusPublished - Nov 6 2017
Event30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 - Honolulu, United States
Duration: Jul 21 2017Jul 26 2017

Publication series

NameProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
Volume2017-January

Conference

Conference30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
Country/TerritoryUnited States
CityHonolulu
Period7/21/177/26/17

Bibliographical note

Publisher Copyright:
© 2017 IEEE.

ASJC Scopus Subject Areas

  • Software
  • Computer Vision and Pattern Recognition

Cite this