Abstract
Face recognition achieves exceptional success thanks to the emergence of deep learning. However, many contemporary face recognition models still perform relatively poor in processing profile faces compared to frontal faces. A key reason is that the number of frontal and profile training faces are highly imbalanced - there are extensively more frontal training samples compared to profile ones. In addition, it is intrinsically hard to learn a deep representation that is geometrically invariant to large pose variations. In this study, we hypothesize that there is an inherent mapping between frontal and profile faces, and consequently, their discrepancy in the deep representation space can be bridged by an equivariant mapping. To exploit this mapping, we formulate a novel Deep Residual EquivAriant Mapping (DREAM) block, which is capable of adaptively adding residuals to the input deep representation to transform a profile face representation to a canonical pose that simplifies recognition. The DREAM block consistently enhances the performance of profile face recognition for many strong deep networks, including ResNet models, without deliberately augmenting training data of profile faces. The block is easy to use, light-weight, and can be implemented with a negligible computational overhead1.
Original language | English |
---|---|
Title of host publication | Proceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 |
Publisher | IEEE Computer Society |
Pages | 5187-5196 |
Number of pages | 10 |
ISBN (Electronic) | 9781538664209 |
DOIs | |
Publication status | Published - Dec 14 2018 |
Externally published | Yes |
Event | 31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 - Salt Lake City, United States Duration: Jun 18 2018 → Jun 22 2018 |
Publication series
Name | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
ISSN (Print) | 1063-6919 |
Conference
Conference | 31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 |
---|---|
Country/Territory | United States |
City | Salt Lake City |
Period | 6/18/18 → 6/22/18 |
Bibliographical note
Publisher Copyright:© 2018 IEEE.
ASJC Scopus Subject Areas
- Software
- Computer Vision and Pattern Recognition