Abstract
The creation of pseudo-magnetic fields in strained graphene has emerged as a promising route to investigate intriguing physical phenomena that would be unattainable with laboratory superconducting magnets. The giant pseudo-magnetic fields observed in highly deformed graphene can substantially alter the optical properties of graphene beyond a level that can be feasible with an external magnetic field, but the experimental signatures of the influence of such pseudo-magnetic fields have yet to be unveiled. Here, using time-resolved infrared pump-probe spectroscopy, we provide unambiguous evidence for slow carrier dynamics enabled by the pseudo-magnetic fields in periodically strained graphene. Strong pseudo-magnetic fields of ~100 T created by non-uniform strain in graphene on nanopillars are found to significantly decelerate the relaxation processes of hot carriers by more than an order of magnitude. Our findings offer alternative opportunities to harness the properties of graphene enabled by pseudo-magnetic fields for optoelectronics and condensed matter physics.
Original language | English |
---|---|
Article number | 5087 |
Journal | Nature Communications |
Volume | 12 |
Issue number | 1 |
DOIs | |
Publication status | Published - Dec 1 2021 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2021, The Author(s).
ASJC Scopus Subject Areas
- General Chemistry
- General Biochemistry,Genetics and Molecular Biology
- General
- General Physics and Astronomy