Abstract
A rapid fluorescence measurement based on resazurin reduction was developed and applied for the detection of toxicants/inhibitors to anaerobic digestion metabolism. By initially using a pure facultative anaerobic strain, Enterococcus faecalis as a model organism, this technique proved to be fast and sensitive when detecting the model toxicant, pentachlorophenol (PCP). The technique revealed significant metabolic changes in Enterococcus faecalis with a PCP spike ranging from 0.05 to 100 mg/L, and could detect PCP's toxicity to E. faecalis at a concentration of only 0.05 mg/L in 8 min. Furthermore, by extending this technique to a mixed anaerobic sludge, not only could the effect of 0.05-100 mg/L PCP be determined on anaerobic digestion metabolism within 10min, but also its rate of biogas production. These results suggest that a resazurin-based fluorescence measurement can potentially be incorporated into a microfluidic system to develop a biosensor for the real-time monitoring, control and early warning of toxicant/inhibitor loads in the influent to an anaerobic digestion system.
Original language | English |
---|---|
Pages (from-to) | 123-130 |
Number of pages | 8 |
Journal | Water Research |
Volume | 75 |
DOIs | |
Publication status | Published - May 5 2015 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2015 Elsevier Ltd.
ASJC Scopus Subject Areas
- Environmental Engineering
- Civil and Structural Engineering
- Ecological Modelling
- Water Science and Technology
- Waste Management and Disposal
- Pollution
Keywords
- Anaerobic digestion
- Biosensor
- Pentachlorophenol
- Resazurin
- Toxicity