TY - JOUR
T1 - Rare Earth Evoked Subsurface Oxygen Species in Platinum Alloy Catalysts Enable Durable Fuel Cells
AU - Yang, Liting
AU - Bai, Jingsen
AU - Zhang, Nanshu
AU - Jiang, Zheng
AU - Wang, Ying
AU - Xiao, Meiling
AU - Liu, Changpeng
AU - Zhu, Siyuan
AU - Xu, Zhichuan J.
AU - Ge, Junjie
AU - Xing, Wei
N1 - Publisher Copyright:
© 2023 Wiley-VCH GmbH.
PY - 2024/2/12
Y1 - 2024/2/12
N2 - Alleviating the degradation issue of Pt based alloy catalysts, thereby simultaneously achieving high mass activity and high durability in proton exchange membrane fuel cells (PEMFCs), is highly challenging. Herein, we provide a new paradigm to address this issue via delaying the place exchange between adsorbed oxygen species and surface Pt atoms, thereby inhibiting Pt dissolution, through introducing rare earth bonded subsurface oxygen atoms. We have succeeded in introducing Gd−O dipoles into Pt3Ni via a high temperature entropy-driven process, with direct spectral evidence attained from both soft and hard X-ray absorption spectroscopies. The higher rated power of 0.93 W cm−2 and superior current density of 562.2 mA cm−2 at 0.8 V than DOE target for heavy-duty vehicles in H2-air mode suggest the great potential of Gd−O−Pt3Ni towards practical application in heavy-duty transportation. Moreover, the mass activity retention (1.04 A mgPt−1) after 40 k cycles accelerated durability tests is even 2.4 times of the initial mass activity goal for DOE 2025 (0.44 A mgPt−1), due to the weakened Pt−Oads bond interaction and the delayed place exchange process, via repulsive forces between surface O atoms and those in the sublayer. This work addresses the critical roadblocks to the widespread adoption of PEMFCs.
AB - Alleviating the degradation issue of Pt based alloy catalysts, thereby simultaneously achieving high mass activity and high durability in proton exchange membrane fuel cells (PEMFCs), is highly challenging. Herein, we provide a new paradigm to address this issue via delaying the place exchange between adsorbed oxygen species and surface Pt atoms, thereby inhibiting Pt dissolution, through introducing rare earth bonded subsurface oxygen atoms. We have succeeded in introducing Gd−O dipoles into Pt3Ni via a high temperature entropy-driven process, with direct spectral evidence attained from both soft and hard X-ray absorption spectroscopies. The higher rated power of 0.93 W cm−2 and superior current density of 562.2 mA cm−2 at 0.8 V than DOE target for heavy-duty vehicles in H2-air mode suggest the great potential of Gd−O−Pt3Ni towards practical application in heavy-duty transportation. Moreover, the mass activity retention (1.04 A mgPt−1) after 40 k cycles accelerated durability tests is even 2.4 times of the initial mass activity goal for DOE 2025 (0.44 A mgPt−1), due to the weakened Pt−Oads bond interaction and the delayed place exchange process, via repulsive forces between surface O atoms and those in the sublayer. This work addresses the critical roadblocks to the widespread adoption of PEMFCs.
KW - Fuel Cells
KW - Oxygen Reduction Reaction
KW - Place Exchange Process
KW - Pt Durability
UR - http://www.scopus.com/inward/record.url?scp=85181879143&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85181879143&partnerID=8YFLogxK
U2 - 10.1002/anie.202315119
DO - 10.1002/anie.202315119
M3 - Article
C2 - 38129317
AN - SCOPUS:85181879143
SN - 1433-7851
VL - 63
JO - Angewandte Chemie - International Edition
JF - Angewandte Chemie - International Edition
IS - 7
M1 - e202315119
ER -