Real-time detection of wound-induced H2O2 signalling waves in plants with optical nanosensors

Tedrick Thomas Salim Lew, Volodymyr B. Koman, Kevin S. Silmore, Jun Sung Seo, Pavlo Gordiichuk, Seon Yeong Kwak, Minkyung Park, Mervin Chun Yi Ang, Duc Thinh Khong, Michael A. Lee, Mary B. Chan-Park, Nam Hai Chua, Michael S. Strano*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

218 Citations (Scopus)

Abstract

Decoding wound signalling in plants is critical for understanding various aspects of plant sciences, from pest resistance to secondary metabolite and phytohormone biosynthesis. The plant defence responses are known to primarily involve NADPH-oxidase-mediated H2O2 and Ca2+ signalling pathways, which propagate across long distances through the plant vasculature and tissues. Using non-destructive optical nanosensors, we find that the H2O2 concentration profile post-wounding follows a logistic waveform for six plant species: lettuce (Lactuca sativa), arugula (Eruca sativa), spinach (Spinacia oleracea), strawberry blite (Blitum capitatum), sorrel (Rumex acetosa) and Arabidopsis thaliana, ranked in order of wave speed from 0.44 to 3.10 cm min−1. The H2O2 wave tracks the concomitant surface potential wave measured electrochemically. We show that the plant RbohD glutamate-receptor-like channels (GLR3.3 and GLR3.6) are all critical to the propagation of the wound-induced H2O2 wave. Our findings highlight the utility of a new type of nanosensor probe that is species-independent and capable of real-time, spatial and temporal biochemical measurements in plants.

Original languageEnglish
Pages (from-to)404-415
Number of pages12
JournalNature Plants
Volume6
Issue number4
DOIs
Publication statusPublished - Apr 1 2020
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2020, The Author(s), under exclusive licence to Springer Nature Limited.

ASJC Scopus Subject Areas

  • Plant Science

Fingerprint

Dive into the research topics of 'Real-time detection of wound-induced H2O2 signalling waves in plants with optical nanosensors'. Together they form a unique fingerprint.

Cite this