Abstract
Twisted bilayer (TB) transition metal dichalcogenides (TMDCs) beyond TB-graphene are considered an ideal platform for investigating condensed matter physics, due to the moiré superlattices-related peculiar band structures and distinct electronic properties. The growth of large-area and high-quality TB-TMDCs with wide twist angles would be significant for exploring twist angle-dependent physics and applications, but remains challenging to implement. Here, we propose a reconfiguring nucleation chemical vapor deposition (CVD) strategy for directly synthesizing TB-MoS2 with twist angles from 0° to 120°. The twist angles-dependent Moiré periodicity can be clearly observed, and the interlayer coupling shows a strong relationship to the twist angles. Moreover, the yield of TB-MoS2 in bilayer MoS2 and density of TB-MoS2 are significantly improved to 17.2% and 28.9 pieces/mm2 by tailoring gas flow rate and molar ratio of NaCl to MoO3. The proposed reconfiguring nucleation approach opens an avenue for the precise growth of TB-TMDCs for both fundamental research and practical applications.
Original language | English |
---|---|
Article number | 562 |
Journal | Nature Communications |
Volume | 15 |
Issue number | 1 |
DOIs | |
Publication status | Published - Dec 2024 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2024, The Author(s).
ASJC Scopus Subject Areas
- General Chemistry
- General Biochemistry,Genetics and Molecular Biology
- General Physics and Astronomy