Abstract
We present a novel learning-based framework for face reenactment. The proposed method, known as ReenactGAN, is capable of transferring facial movements and expressions from an arbitrary person’s monocular video input to a target person’s video. Instead of performing a direct transfer in the pixel space, which could result in structural artifacts, we first map the source face onto a boundary latent space. A transformer is subsequently used to adapt the source face’s boundary to the target’s boundary. Finally, a target-specific decoder is used to generate the reenacted target face. Thanks to the effective and reliable boundary-based transfer, our method can perform photo-realistic face reenactment. In addition, ReenactGAN is appealing in that the whole reenactment process is purely feed-forward, and thus the reenactment process can run in real-time (30 FPS on one GTX 1080 GPU). Dataset and model are publicly available on our project page (Project Page: https://wywu.github.io/projects/ReenactGAN/ReenactGAN.html).
Original language | English |
---|---|
Title of host publication | Computer Vision – ECCV 2018 - 15th European Conference, 2018, Proceedings |
Editors | Martial Hebert, Vittorio Ferrari, Cristian Sminchisescu, Yair Weiss |
Publisher | Springer Verlag |
Pages | 622-638 |
Number of pages | 17 |
ISBN (Print) | 9783030012458 |
DOIs | |
Publication status | Published - 2018 |
Externally published | Yes |
Event | 15th European Conference on Computer Vision, ECCV 2018 - Munich, Germany Duration: Sept 8 2018 → Sept 14 2018 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 11205 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 15th European Conference on Computer Vision, ECCV 2018 |
---|---|
Country/Territory | Germany |
City | Munich |
Period | 9/8/18 → 9/14/18 |
Bibliographical note
Publisher Copyright:© 2018, Springer Nature Switzerland AG.
ASJC Scopus Subject Areas
- Theoretical Computer Science
- General Computer Science
Keywords
- Face alignment
- Face generation
- Face reenactment
- GAN