TY - JOUR
T1 - Regulation of choroidal blood flow during combined changes in intraocular pressure and arterial blood pressure
AU - Polska, Elzbieta
AU - Simader, Christian
AU - Weigert, Günter
AU - Doelemeyer, Arno
AU - Kolodjaschna, Julia
AU - Scharmann, Ole
AU - Schmetterer, Leopold
PY - 2007/8
Y1 - 2007/8
N2 - PURPOSE. To test the hypothesis that human choroidal blood flow (ChBF) may depend, not only on ocular perfusion pressure (OPP), but also on absolute mean arterial pressure (MAP) and intraocular pressure (IOP). METHODS. There were two study days in an open design. On the first day, OPP was varied by elevating IOP during a squatting-induced increase in MAP (28 subjects). On the second day, only the IOP was increased (17 subjects). IOP was raised in stepwise increments by using the suction cup method. Subfoveal ChBF (laser Doppler flowmetry), MAP, and IOP were assessed, and OPP was calculated as 2/3(MAP - IOP). For correlation analysis, data from all subjects were pooled according to IOP and MAP, and correlation analyses were performed. RESULTS. When data from study day 1 were grouped according to IOP, no correlation was observed between ChBF and MAP; but ChBFs were lower, the higher the IOP (P < 0.001). When data were grouped according to MAP, a significant correlation was found between ChBF and IOP (P < 0.001), but correlations were independent of MAP. When data of study day 2 were pooled according to IOP, a correlation between ChBF and OPP was seen only at IOP > 40 mm Hg (P < 0.05). CONCLUSIONS. The data confirm previously published observations that the choroid shows some autoregulatory capacity during changes in OPP. In addition, the data indicate that the choroid regulates its blood flow better during exercise-induced changes in MAP than during an experimental increase in IOP.
AB - PURPOSE. To test the hypothesis that human choroidal blood flow (ChBF) may depend, not only on ocular perfusion pressure (OPP), but also on absolute mean arterial pressure (MAP) and intraocular pressure (IOP). METHODS. There were two study days in an open design. On the first day, OPP was varied by elevating IOP during a squatting-induced increase in MAP (28 subjects). On the second day, only the IOP was increased (17 subjects). IOP was raised in stepwise increments by using the suction cup method. Subfoveal ChBF (laser Doppler flowmetry), MAP, and IOP were assessed, and OPP was calculated as 2/3(MAP - IOP). For correlation analysis, data from all subjects were pooled according to IOP and MAP, and correlation analyses were performed. RESULTS. When data from study day 1 were grouped according to IOP, no correlation was observed between ChBF and MAP; but ChBFs were lower, the higher the IOP (P < 0.001). When data were grouped according to MAP, a significant correlation was found between ChBF and IOP (P < 0.001), but correlations were independent of MAP. When data of study day 2 were pooled according to IOP, a correlation between ChBF and OPP was seen only at IOP > 40 mm Hg (P < 0.05). CONCLUSIONS. The data confirm previously published observations that the choroid shows some autoregulatory capacity during changes in OPP. In addition, the data indicate that the choroid regulates its blood flow better during exercise-induced changes in MAP than during an experimental increase in IOP.
UR - http://www.scopus.com/inward/record.url?scp=34648813924&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34648813924&partnerID=8YFLogxK
U2 - 10.1167/iovs.07-0307
DO - 10.1167/iovs.07-0307
M3 - Article
C2 - 17652750
AN - SCOPUS:34648813924
SN - 0146-0404
VL - 48
SP - 3768
EP - 3774
JO - Investigative Ophthalmology and Visual Science
JF - Investigative Ophthalmology and Visual Science
IS - 8
ER -