Abstract
Real-time imaging of kidney function is important to assess the nephrotoxicity of drugs and monitor the progression of renal diseases; however, it remains challenging because of the lack of optical agents with high renal clearance and high signal-to-background ratio (SBR). Herein, a second near-infrared (NIR-II) fluorescent molecular semiconductor (CDIR2) is synthesized for real-time imaging of kidney dysfunction in living mice. CDIR2 not only has a high renal clearance efficiency (≈90 % injection dosage at 24 h post-injection), but also solely undergoes glomerular filtration into urine without being reabsorbed and secreted in renal tubules. Such a unidirectional renal clearance pathway of CDIR2 permits real-time monitoring of kidney dysfunction in living mice upon nephrotoxic exposure. Thus, this study not only introduces a molecular renal probe but also provides useful molecular guidelines to increase the renal clearance efficiency of NIR-II fluorescent agents.
Original language | English |
---|---|
Pages (from-to) | 15120-15127 |
Number of pages | 8 |
Journal | Angewandte Chemie - International Edition |
Volume | 58 |
Issue number | 42 |
DOIs | |
Publication status | Published - Oct 14 2019 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ASJC Scopus Subject Areas
- Catalysis
- General Chemistry
Keywords
- kidney dysfunction
- molecular probes
- renal clearance
- second near-infrared imaging