TY - JOUR
T1 - Retinal hemodynamic effects of antioxidant supplementation in an endotoxin-induced model of oxidative stress in humans
AU - Told, Reinhard
AU - Palkovits, Stefan
AU - Schmidl, Doreen
AU - Boltz, Agnes
AU - Gouya, Ghazaleh
AU - Wolzt, Michael
AU - Napora, Katarzyna J.
AU - Werkmeister, René M.
AU - Popa-Cherecheanu, Alina
AU - Garhöfer, Gerhard
AU - Schmetterer, Leopold
PY - 2014/4/7
Y1 - 2014/4/7
N2 - Purpose. The Age-Related Eye Disease Study 1 (AREDS 1) has shown that nutritional supplementation with antioxidants and zinc modifies the natural course of AMD. It is presumed that the supplements exert their beneficial effects by ameliorating oxidative stress due to the scavenging of reactive oxygen species (ROS). We have shown in a human model that under oxidative stress induced by administration of lipopolysaccharide (LPS) the vasoconstrictor response of retinal vessels to oxygen breathing is diminished. This reduced vascular response to hyperoxia was previously shown to be normalized by the AREDS 1 supplements. In the present study, we tested the hypothesis that the response can also be restored by a different antioxidant formulation. Methods. This randomized, double-masked, placebo-controlled parallel group study included 40 healthy volunteers. On each study day, retinal red blood cell (RBC) flow and the reactivity of retinal RBC flow to hyperoxia were investigated in the absence and presence of 2 ng/kg LPS. Between the two study days, subjects received either the supplement or placebo for 14 days. Results. Before supplementation LPS reduced retinal arterial vasoconstriction (P < 0.001) and reactivity of retinal RBC flow (P = 0.03) in response to 100% oxygen breathing. Two weeks of supplementation did not affect baseline retinal RBC flow, but normalized the LPS-induced change in the response to hyperoxia. The arterial vasoconstrictor response during LPS and 100% oxygen breathing was 4.1 ± 1.0% after administration of placebo and 10.6 ± 0.9% after supplementation (P = 0.005). The response of RBC flow to 100% oxygen breathing during LPS was 52.2 ± 2.1% after administration of placebo and 59.5 ± 2.0% after supplementation (P = 0.033). Conclusions. Our data show that the supplement used in the present study can normalize the response of retinal RBC flow to hyperoxia under LPS administration. This indicates that supplementation can prevent endothelial dysfunction induced by oxidative stress, which is assumed to play a role in the pathophysiology of AMD. (ClinicalTrials.gov number, NCT00914576.).
AB - Purpose. The Age-Related Eye Disease Study 1 (AREDS 1) has shown that nutritional supplementation with antioxidants and zinc modifies the natural course of AMD. It is presumed that the supplements exert their beneficial effects by ameliorating oxidative stress due to the scavenging of reactive oxygen species (ROS). We have shown in a human model that under oxidative stress induced by administration of lipopolysaccharide (LPS) the vasoconstrictor response of retinal vessels to oxygen breathing is diminished. This reduced vascular response to hyperoxia was previously shown to be normalized by the AREDS 1 supplements. In the present study, we tested the hypothesis that the response can also be restored by a different antioxidant formulation. Methods. This randomized, double-masked, placebo-controlled parallel group study included 40 healthy volunteers. On each study day, retinal red blood cell (RBC) flow and the reactivity of retinal RBC flow to hyperoxia were investigated in the absence and presence of 2 ng/kg LPS. Between the two study days, subjects received either the supplement or placebo for 14 days. Results. Before supplementation LPS reduced retinal arterial vasoconstriction (P < 0.001) and reactivity of retinal RBC flow (P = 0.03) in response to 100% oxygen breathing. Two weeks of supplementation did not affect baseline retinal RBC flow, but normalized the LPS-induced change in the response to hyperoxia. The arterial vasoconstrictor response during LPS and 100% oxygen breathing was 4.1 ± 1.0% after administration of placebo and 10.6 ± 0.9% after supplementation (P = 0.005). The response of RBC flow to 100% oxygen breathing during LPS was 52.2 ± 2.1% after administration of placebo and 59.5 ± 2.0% after supplementation (P = 0.033). Conclusions. Our data show that the supplement used in the present study can normalize the response of retinal RBC flow to hyperoxia under LPS administration. This indicates that supplementation can prevent endothelial dysfunction induced by oxidative stress, which is assumed to play a role in the pathophysiology of AMD. (ClinicalTrials.gov number, NCT00914576.).
KW - Healthy subjects
KW - Nutritional supplementation
KW - Oxygen
KW - Retinal blood flow regulation
UR - http://www.scopus.com/inward/record.url?scp=84898728746&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84898728746&partnerID=8YFLogxK
U2 - 10.1167/iovs.13-13784
DO - 10.1167/iovs.13-13784
M3 - Article
C2 - 24576874
AN - SCOPUS:84898728746
SN - 0146-0404
VL - 55
SP - 2220
EP - 2227
JO - Investigative Ophthalmology and Visual Science
JF - Investigative Ophthalmology and Visual Science
IS - 4
ER -