Rupture process of the 2010 Mw 7.8 Mentawai tsunami earthquake from joint inversion of near-field hr-GPS and teleseismic body wave recordings constrained by tsunami observations

Han Yue, Thorne Lay*, Luis Rivera, Yefei Bai, Yoshiki Yamazaki, Kwok Fai Cheung, Emma M. Hill, Kerry Sieh, Widjo Kongko, Abdul Muhari

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

72 Citations (Scopus)

Abstract

The 25 October 2010 Mentawai tsunami earthquake (Mw 7.8) ruptured the shallow portion of the Sunda megathrust seaward of the Mentawai Islands, offshore of Sumatra, Indonesia, generating a strong tsunami that took 509 lives. The rupture zone was updip of those of the 12 September 2007 M w 8.5 and 7.9 underthrusting earthquakes. High-rate (1 s sampling) GPS instruments of the Sumatra GPS Array network deployed on the Mentawai Islands and Sumatra mainland recorded time-varying and static ground displacements at epicentral distances from 49 to 322 km. Azimuthally distributed tsunami recordings from two deepwater sensors and two tide gauges that have local high-resolution bathymetric information provide additional constraints on the source process. Finite-fault rupture models, obtained by joint inversion of the high-rate (hr)-GPS time series and numerous teleseismic broadband P and S wave seismograms together with iterative forward modeling of the tsunami recordings, indicate rupture propagation ∼50 km up dip and ∼100 km northwest along strike from the hypocenter, with a rupture velocity of ∼1.8 km/s. Subregions with large slip extend from 7 to 10 km depth ∼80 km northwest from the hypocenter with a maximum slip of 8 m and from ∼5 km depth to beneath thin horizontal sedimentary layers beyond the prism deformation front for ∼100 km along strike, with a localized region having >15 m of slip. The seismic moment is 7.2 ×1020 N m. The rupture model indicates that local heterogeneities in the shallow megathrust can accumulate strain that allows some regions near the toe of accretionary prisms to fail in tsunami earthquakes. Key Points The 2010 Mentawai tsunami earthquake ruptured to the trench Rupture model is obtained by modeling hr-GPS, seismic, and tsunami data Patchy slip at the toe of the trench indicates local strain accumulation

Original languageEnglish
Pages (from-to)5574-5593
Number of pages20
JournalJournal of Geophysical Research: Solid Earth
Volume119
Issue number7
DOIs
Publication statusPublished - Jul 2014
Externally publishedYes

ASJC Scopus Subject Areas

  • Geophysics
  • Geochemistry and Petrology
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science

Keywords

  • finite-fault model
  • hr-GPS inversion
  • megathrust
  • slip inversion
  • tsunami earthquake
  • tsunami modeling

Fingerprint

Dive into the research topics of 'Rupture process of the 2010 Mw 7.8 Mentawai tsunami earthquake from joint inversion of near-field hr-GPS and teleseismic body wave recordings constrained by tsunami observations'. Together they form a unique fingerprint.

Cite this