SAR Study on Thiolato-Bridged Triosmium Carbonyl Clusters: Higher Reactivity Does Not Equal Higher Antiproliferative Activity

Xin Liang, Weng Kee Leong*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

A structure-activity relationship study on triosmium clusters of the general formula Os3(μ-H)(μ-SC6H4X)(CO)10 (2-X, where X = o-, m- or p-NH2; o-, m- or p- OH; p-H, -Br, -NO2, -COOH or -CH2COOH) show that their antiproliferative activity is through the cluster core, and the nature and position of the phenyl ring substituent X shows a significant impact on the activity. Clusters with an electron-withdrawing group are more reactive but are thus quickly consumed through reaction with serum, while those with an electron-donating group persists sufficiently to enter the cells and result in higher antiproliferative activity. Interestingly, m-substituted clusters and those with lipophilicity >6.0 also exhibit higher antiproliferative activity. In contrast, o-substituted clusters capable of intramolecular hydrogen bonding have lower cytotoxicity. The cluster 2-m-OH, with higher antiproliferative activity and lower reactivity with serum, is a potential lead compound for further mode of action studies.

Original languageEnglish
JournalJournal of Medicinal Chemistry
DOIs
Publication statusAccepted/In press - 2024
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2024 American Chemical Society.

ASJC Scopus Subject Areas

  • Molecular Medicine
  • Drug Discovery

Fingerprint

Dive into the research topics of 'SAR Study on Thiolato-Bridged Triosmium Carbonyl Clusters: Higher Reactivity Does Not Equal Higher Antiproliferative Activity'. Together they form a unique fingerprint.

Cite this