Abstract
The simple and versatile CRISPR/Cas9 system is a promising strategy for genome editing in mammalian cells. Generally, the genome editing components, namely Cas9 protein and single-guide RNA (sgRNA), are delivered in the format of plasmids, mRNA, or ribonucleoprotein (RNP) complexes. In particular, non-viral approaches are desirable as they overcome the safety concerns posed by viral vectors. To control cell fate for tissue regeneration, scaffold-based delivery of genome editing components will offer a route for local delivery and provide possible synergistic effects with other factors such as topographical cues that are co-delivered by the same scaffold. In this chapter, we detail a simple method of surface modification to functionalize electrospun nanofibers with CRISPR/Cas9 RNP complexes. The mussel-inspired bio-adhesive coating will be used as it is a simple and effective method to immobilize biomolecules on the surface. Nanofibers will provide a biomimicking microenvironment and topographical cues to seeded cells. For evaluation, a model cell line with single copies of enhanced green fluorescent protein (U2OS.EGFP) will be used to validate the efficiency of gene disruption.
Original language | English |
---|---|
Title of host publication | Methods in Molecular Biology |
Publisher | Humana Press Inc. |
Pages | 183-191 |
Number of pages | 9 |
DOIs | |
Publication status | Published - 2021 |
Externally published | Yes |
Publication series
Name | Methods in Molecular Biology |
---|---|
Volume | 2211 |
ISSN (Print) | 1064-3745 |
ISSN (Electronic) | 1940-6029 |
Bibliographical note
Publisher Copyright:© 2021, Springer Science+Business Media, LLC, part of Springer Nature.
ASJC Scopus Subject Areas
- Molecular Biology
- Genetics
Keywords
- Cas9 protein
- Electrospinning
- Gene delivery
- Ribonucleoprotein
- Tissue engineering