Abstract
Covalent triazine frameworks (CTFs) are emerging as a promising molecular platform for photocatalysis. Nevertheless, the construction of highly effective charge transfer pathways in CTFs for oriented delivery of photoexcited electrons to enhance photocatalytic performance remains highly challenging. Herein, a molecular engineering strategy is presented to achieve highly efficient charge separation and transport in both the lateral and vertical directions for solar-to-formate conversion. Specifically, a large π-delocalized and π-stacked Schottky junction (Ru-Th-CTF/RGO) that synergistically knits a rebuilt extended π-delocalized network of the D–A1–A2 system (multiple donor or acceptor units, Ru-Th-CTF) with reduced graphene oxide (RGO) is developed. It is verified that the single-site Ru units in Ru-Th-CTF/RGO act as effective secondary electron acceptors in the lateral direction for multistage charge separation/transport. Simultaneously, the π-stacked and covalently bonded graphene is regarded as a hole extraction layer, accelerating the separation/transport of the photogenerated charges in the vertical direction over the Ru-Th-CTF/RGO Schottky junction with full use of photogenerated electrons for the reduction reaction. Thus, the obtained photocatalyst has an excellent CO2-to-formate conversion rate (≈11050 µmol g−1 h−1) and selectivity (≈99%), producing a state-of-the-art catalyst for the heterogeneous conversion of CO2 to formate without an extra photosensitizer.
Original language | English |
---|---|
Article number | 2309376 |
Journal | Advanced Materials |
Volume | 36 |
Issue number | 5 |
DOIs | |
Publication status | Published - Feb 1 2024 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2023 Wiley-VCH GmbH.
ASJC Scopus Subject Areas
- General Materials Science
- Mechanics of Materials
- Mechanical Engineering
Keywords
- CO photoreduction
- covalent triazine frameworks
- formic acid production
- Schottky junction
- single-site catalyst