Sea-level rise from land subsidence in major coastal cities

Cheryl Tay*, Eric O. Lindsey, Shi Tong Chin, Jamie W. McCaughey, David Bekaert, Michele Nguyen, Hook Hua, Gerald Manipon, Mohammed Karim, Benjamin P. Horton, Tanghua Li, Emma M. Hill

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

68 Citations (Scopus)

Abstract

Coastal land can be lost at rapid rates due to relative sea-level rise (RSLR) resulting from local land subsidence. However, the comparative severity of local land subsidence is unknown due to high spatial variabilities and difficulties reconciling observations across localities. Here we provide self-consistent, high spatial resolution relative local land subsidence (RLLS) velocities derived from Interferometric Synthetic Aperture Radar for the 48 largest coastal cities, which represent 20% of the global urban population. We show that cities experiencing the fastest RLLS are concentrated in Asia. RLLS is also more variable across the 48 cities (−16.2 to 1.1 mm per year) than the Intergovernmental Panel on Climate Change estimations of vertical land motion (−5.2 to 4.9 mm per year). With our standardized method, the identification of relative vulnerabilities to RLLS and comparisons of RSLR effects accounting for RLLS are now possible across cities worldwide. These will better inform sustainable urban planning and future adaptation strategies in coastal cities.

Original languageEnglish
Pages (from-to)1049-1057
Number of pages9
JournalNature Sustainability
Volume5
Issue number12
DOIs
Publication statusPublished - Dec 2022
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer Nature Limited.

ASJC Scopus Subject Areas

  • Global and Planetary Change
  • Food Science
  • Geography, Planning and Development
  • Ecology
  • Renewable Energy, Sustainability and the Environment
  • Urban Studies
  • Nature and Landscape Conservation
  • Management, Monitoring, Policy and Law

Fingerprint

Dive into the research topics of 'Sea-level rise from land subsidence in major coastal cities'. Together they form a unique fingerprint.

Cite this