Self-supervised learning via conditional motion propagation

Xiaohang Zhan, Xingang Pan, Ziwei Liu, Dahua Lin, Chen Change Loy

Research output: Chapter in Book/Report/Conference proceedingConference contribution

43 Citations (Scopus)

Abstract

Intelligent agent naturally learns from motion. Various self-supervised algorithms have leveraged the motion cues to learn effective visual representations. The hurdle here is that motion is both ambiguous and complex, rendering previous works either suffer from degraded learning efficacy, or resort to strong assumptions on object motions. In this work, we design a new learning-from-motion paradigm to bridge these gaps. Instead of explicitly modeling the motion probabilities, we design the pretext task as a conditional motion propagation problem. Given an input image and several sparse flow guidance on it, our framework seeks to recover the full-image motion. Compared to other alternatives, our framework has several appealing properties: (1) Using sparse flow guidance during training resolves the inherent motion ambiguity, and thus easing feature learning. (2) Solving the pretext task of conditional motion propagation encourages the emergence of kinematically-sound representations that poss greater expressive power. Extensive experiments demonstrate that our framework learns structural and coherent features; and achieves state-of-the-art self-supervision performance on several downstream tasks including semantic segmentation, instance segmentation and human parsing. Furthermore, our framework is successfully extended to several useful applications such as semi-automatic pixel-level annotation.

Original languageEnglish
Title of host publicationProceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
PublisherIEEE Computer Society
Pages1881-1889
Number of pages9
ISBN (Electronic)9781728132938
DOIs
Publication statusPublished - Jun 2019
Externally publishedYes
Event32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 - Long Beach, United States
Duration: Jun 16 2019Jun 20 2019

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2019-June
ISSN (Print)1063-6919

Conference

Conference32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
Country/TerritoryUnited States
CityLong Beach
Period6/16/196/20/19

Bibliographical note

Publisher Copyright:
© 2019 IEEE.

ASJC Scopus Subject Areas

  • Software
  • Computer Vision and Pattern Recognition

Keywords

  • Representation Learning
  • Scene Analysis and Understanding

Cite this