Semantic image segmentation via deep parsing network

Ziwei Liu, Xiaoxiao Li, Ping Luo*, Chen Change Loy, Xiaoou Tang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

604 Citations (Scopus)

Abstract

This paper addresses semantic image segmentation by incorporating rich information into Markov Random Field (MRF), including high-order relations and mixture of label contexts. Unlike previous works that optimized MRFs using iterative algorithm, we solve MRF by proposing a Convolutional Neural Network (CNN), namely Deep Parsing Network (DPN), which enables deterministic end-to-end computation in a single forward pass. Specifically, DPN extends a contemporary CNN architecture to model unary terms and additional layers are carefully devised to approximate the mean field algorithm (MF) for pairwise terms. It has several appealing properties. First, different from the recent works that combined CNN and MRF, where many iterations of MF were required for each training image during back-propagation, DPN is able to achieve high performance by approximating one iteration of MF. Second, DPN represents various types of pairwise terms, making many existing works as its special cases. Third, DPN makes MF easier to be parallelized and speeded up in Graphical Processing Unit (GPU). DPN is thoroughly evaluated on the PASCAL VOC 2012 dataset, where a single DPN model yields a new state-of-the-art segmentation accuracy of 77.5%.

Original languageEnglish
Title of host publication2015 International Conference on Computer Vision, ICCV 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1377-1385
Number of pages9
ISBN (Electronic)9781467383912
DOIs
Publication statusPublished - Feb 17 2015
Externally publishedYes
Event15th IEEE International Conference on Computer Vision, ICCV 2015 - Santiago, Chile
Duration: Dec 11 2015Dec 18 2015

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
Volume2015 International Conference on Computer Vision, ICCV 2015
ISSN (Print)1550-5499

Conference

Conference15th IEEE International Conference on Computer Vision, ICCV 2015
Country/TerritoryChile
CitySantiago
Period12/11/1512/18/15

Bibliographical note

Publisher Copyright:
© 2015 IEEE.

ASJC Scopus Subject Areas

  • Software
  • Computer Vision and Pattern Recognition

Cite this