Abstract
Liquid marbles are emergent microreactors owing to their isolated environment and the flexibility of materials used. Plasmonic liquid marbles (PLMs) are demonstrated as the smallest spectroelectrochemical microliter-scale reactor for concurrent spectro- and electrochemical analyses. The three-dimensional Ag shell of PLMs are exploited as a bifunctional surface-enhanced Raman scattering (SERS) platform and working electrode for redox process modulation. The combination of SERS and electrochemistry (EC) capabilities enables in situ molecular read-out of transient electrochemical species, and elucidate the potential-dependent and multi-step reaction dynamics. The 3D configuration of our PLM-based EC-SERS system exhibits 2-fold and 10-fold superior electrochemical and SERS performance than conventional 2D platforms. The rich molecular-level electrochemical insights and excellent EC-SERS capabilities offered by our 3D spectroelectrochemical system are pertinent in charge transfer processes.
Original language | English |
---|---|
Pages (from-to) | 8813-8817 |
Number of pages | 5 |
Journal | Angewandte Chemie - International Edition |
Volume | 56 |
Issue number | 30 |
DOIs | |
Publication status | Published - Jul 17 2017 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ASJC Scopus Subject Areas
- Catalysis
- General Chemistry
Keywords
- 3D electrodes
- Ag nanoparticles
- in situ SERS
- liquid marbles
- spectroelectrochemistry