Abstract
Three-dimensional (3D) architectures have qualitatively expanded the functions of materials and flexible electronics. However, current fabrication techniques for devices constrain their substrates to 2D geometries and current post-shape transformation strategies are limited to heterogenous or responsive materials and are not amenable to free-standing inert plastic films such as polyethylene terephthalate (PET) and polyimide (PI), which are vital substrates for flexible electronics. Here, we realize the shape morphing of homogeneous plastic films for various free-standing 3D frameworks from their 2D precursors by introducing a general strategy based on programming the plastic strain in films under peeling. By modulating the peeling parameters, previously inaccessible free-standing 3D geometries ranging from millimeter to micrometer were predicted theoretically and obtained experimentally. This strategy is applicable to most materials capable of plastic deformation, including polymers, metals, and composite materials, and can even enable 4D transformation with responsive plastic films. Enhanced performance of 3D circuits and piezoelectric systems demonstrates the enormous potential of peeling-induced shape morphing for 3D devices.
Original language | English |
---|---|
Article number | 7294 |
Journal | Nature Communications |
Volume | 13 |
Issue number | 1 |
DOIs | |
Publication status | Published - Dec 2022 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2022, The Author(s).
ASJC Scopus Subject Areas
- General Chemistry
- General Biochemistry,Genetics and Molecular Biology
- General Physics and Astronomy
Fingerprint
Dive into the research topics of 'Shape morphing of plastic films'. Together they form a unique fingerprint.Press/Media
-
Nanyang Technological University Reports Findings in Science (Shape morphing of plastic films)
12/13/22
1 item of Media coverage
Press/Media: Research