Sharp-peaked lanthanide nanocrystals for near-infrared photoacoustic multiplexed differential imaging

Kang Yong Loh, Lei S. Li, Jingyue Fan, Yi Yiing Goh, Weng Heng Liew, Samuel Davis, Yide Zhang, Kai Li, Jie Liu, Liangliang Liang, Minjun Feng, Ming Yang, Hang Zhang, Ping’an Ma, Guangxue Feng, Zhao Mu, Weibo Gao, Tze Chien Sum, Bin Liu, Jun LinKui Yao, Lihong V. Wang*, Xiaogang Liu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Photoacoustic tomography offers a powerful tool to visualize biologically relevant molecules and understand processes within living systems at high resolution in deep tissue, facilitated by the conversion of incident photons into low-scattering acoustic waves through non-radiative relaxation. Although current endogenous and exogenous photoacoustic contrast agents effectively enable molecular imaging within deep tissues, their broad absorption spectra in the visible to near-infrared (NIR) range limit photoacoustic multiplexed imaging. Here, we exploit the distinct ultrasharp NIR absorption peaks of lanthanides to engineer a series of NIR photoacoustic nanocrystals. This engineering involves precise host and dopant material composition, yielding nanocrystals with sharply peaked photoacoustic absorption spectra (~3.2 nm width) and a ~10-fold enhancement in NIR optical absorption for efficient deep tissue imaging. By combining photoacoustic tomography with these engineered nanocrystals, we demonstrate photoacoustic multiplexed differential imaging with substantially decreased background signals and enhanced precision and contrast.

Original languageEnglish
Article number164
JournalCommunications Materials
Volume5
Issue number1
DOIs
Publication statusPublished - Dec 2024
Externally publishedYes

Bibliographical note

Publisher Copyright:
© The Author(s) 2024.

ASJC Scopus Subject Areas

  • General Materials Science
  • Mechanics of Materials

Fingerprint

Dive into the research topics of 'Sharp-peaked lanthanide nanocrystals for near-infrared photoacoustic multiplexed differential imaging'. Together they form a unique fingerprint.

Cite this