Abstract
The manipulation of light in an integrated circuit is crucial for the development of high-speed electro-optic devices. Recently, molybdenum disulfide (MoS2) monolayers generated broad interest for the optoelectronics because of their huge exciton binding energy, tunable optical emission, direct electronic band-gap structure, etc. Miniaturization and multifunctionality of electro-optic devices further require the manipulation of light-matter interaction at the single-nanoparticle level. The strong exciton-plasmon interaction that is generated between the MoS2 monolayers and metallic nanostructures may be a possible solution for compact electro-optic devices at the nanoscale. Here, we demonstrate a nanoplasmonic modulator in the visible spectral region by combining the MoS2 monolayers with a single Au nanodisk. The narrow MoS2 excitons coupled with broad Au plasmons result in a deep Fano resonance, which can be switched on and off by applying different gate voltages on the MoS2 monolayers. A reversible display device that is based on this single-nanoparticle modulator is demonstrated with a heptamer pattern that is actively controlled by the external gates. Our work provides a potential application for electro-optic modulation on the nanoscale and promotes the development of gate-tunable nanoplasmonic devices in the future.
Original language | English |
---|---|
Pages (from-to) | 9720-9727 |
Number of pages | 8 |
Journal | ACS Nano |
Volume | 11 |
Issue number | 10 |
DOIs | |
Publication status | Published - Oct 24 2017 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2017 American Chemical Society.
ASJC Scopus Subject Areas
- General Materials Science
- General Engineering
- General Physics and Astronomy
Keywords
- electro-optic modulator
- exciton-plasmon interaction
- Fano resonance
- MoS
- trions