Abstract
The ever-increasing generation of sewage sludge in megacities places a substantial burden on waste treatment systems. The complex and resilient structure of sludge renders conventional pretreatment and biological reclamation methods time-consuming, energy-inefficient and environmentally burdensome. Here we present an integrated mechano-electro-bioprocess that valorizes sludge with minimal environmental impact. We achieve nearly complete recovery of organics with ~91.4% total organic carbon (TOC), which are effectively converted into single-cell protein (>63% TOC) in a tandem process. Heavy metals are efficiently concentrated and stabilized, while simultaneously producing green hydrogen at an impressive efficiency and rate (~10% solar-to-hydrogen energy efficiency, rate >13 l per hour). A comprehensive life-cycle and techno-economic analysis confirms the substantial environmental and economic benefits of this approach. Notably, it results in a 99.5% reduction in CO2 emissions and a 99.3% decrease in energy depletion compared with conventional anaerobic digestion. As renewable electricity deployment expands globally, this mechano-electro-bioprocess offers a promising path towards sustainable development.
Original language | English |
---|---|
Article number | 115383 |
Pages (from-to) | 1102-1115 |
Number of pages | 14 |
Journal | Nature Water |
Volume | 2 |
Issue number | 11 |
DOIs | |
Publication status | Published - Nov 2024 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© The Author(s), under exclusive licence to Springer Nature Limited 2024.
ASJC Scopus Subject Areas
- Environmental Science (miscellaneous)
- Environmental Engineering
- Water Science and Technology