Solution transformation of Cu2O into CuInS2 for solar water splitting

Jingshan Luo*, S. David Tilley, Ludmilla Steier, Marcel Schreier, Matthew T. Mayer, Hong Jin Fan, Michael Grätzel

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

114 Citations (Scopus)

Abstract

Though Cu2O has demonstrated high performance as a photocathode for solar water splitting, its band gap is too large for efficient use as the bottom cell in tandem configurations. Accordingly, copper chalcopyrites have recently attracted much attention for solar water splitting due to their smaller and tunable band gaps. However, their fabrication is mainly based on vacuum evaporation, which is an expensive and energy consuming process. Here, we have developed a novel and low-cost solution fabrication method, and CuInS2 was chosen as a model material due to its smaller band gap compared to Cu2O and relatively simple composition. The nanostructured CuInS2 electrodes were synthesized at low temperature in crystalline form by solvothermal treatment of electrochemically deposited Cu2O films. Following the coating of overlayers and decoration with Pt catalyst, the as-fabricated CuInS2 electrode demonstrated water splitting photocurrents of 3.5 mA cm-2 under simulated solar illumination. To the best of our knowledge, this is the highest performance yet reported for a solution-processed copper chalcopyrite electrode for solar water splitting. Furthermore, the electrode showed good stability and had a broad incident photon-to-current efficiency (IPCE) response to wavelengths beyond 800 nm, consistent with the smaller bandgap of this material.

Original languageEnglish
Pages (from-to)1395-1402
Number of pages8
JournalNano Letters
Volume15
Issue number2
DOIs
Publication statusPublished - Feb 11 2015
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2015 American Chemical Society.

ASJC Scopus Subject Areas

  • Bioengineering
  • General Chemistry
  • General Materials Science
  • Condensed Matter Physics
  • Mechanical Engineering

Keywords

  • CuO
  • CuInS
  • solar water splitting
  • Solution transformation

Fingerprint

Dive into the research topics of 'Solution transformation of Cu2O into CuInS2 for solar water splitting'. Together they form a unique fingerprint.

Cite this